

BCH-003-1015003 Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

August - 2021

Mathematics: Paper - 07 (A)

(Boolean Algebra & Complex Analysis - I) (New Course)

Faculty Code: 003

Subject Code: 1015003

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instruction:

- 1) All the questions are compulsory.
- 2) Attempt any FIVE questions out of TEN.
- 3) Numbers written in the right indicate marks of the questions.
- 1.(A) Answer the following questions briefly.

[04]

- 1) 'R is not reflexive means that R is irreflexive' (TRUE/FALSE).
- 2) If $R = \{(2,2), (1,3), (2,3), (3,1)\}$ is a relation on $A = \{1,2,3\}$ then find R^{-1} .
- 3) Define: Symmetric Relation.
- 4) Define: Complemented lattice.
- (B) Answer the following question.

[02]

- 1) If $(L,*,\oplus,',0,1)$ is a bounded lattice then prove that (i) a*1=a (ii) $a\oplus 1=1$.
- (C) Answer the following question.

[03]

- 1) State and Prove Isotonicity Property.
- (D) Answer the following question.

[05]

- 1) Prove that every chain is distributive lattice.
- 2.(A) Answer the following questions briefly.

[04]

- 1) Define: Transitive relation.
- 2) Define: Equivalence relation.
- 3) Define: Identity relation.
- 4) Define: Partial order relation.
- .(B) Answer the following question.

[02]

1) Consider the relation $R = \{(i,j) / |i-j| = 2\}$ on $\{1, 2, 3, 4, 5, 6\}$. Is R is transitive?

BCH-003-1015003]

[Contd....

(C) Answer the following question.	[03]
1) In the lattice if $a \le b$ and $c \le d$, then prove that $a*c \le b*d$ and $a \oplus c \le b \oplus d$.	
(D) Answer the following question.	[05]
 Direct product of two lattice is also a lattice. 	
 (A) Answer the following questions briefly. 1) Define: Sub Boolean algebra. 2) Define: Atoms in Boolean Algebra. 3) Define: Minterms. 4) Define: Maxterms. 	[04]
(B) Answer the following question.	[02]
1) Draw Hasse Diagram of (S_{30}, D) .	
 (C) Answer the following question. 1) Express the Boolean expression a(x₁, x₂, x₃) = x₁ ⊕ x₂ as the sum of product of canonical form. 	[03]
(D) Answer the following question.	[05]
1) State and Prove De' Morgan's Law.	
4.(A) Answer the following questions briefly.	[04]
 Define: Boolean isomorphism. Sum of all minterms in n - variables is The Karnaugh map is useful to minimize the For POSET(S₃₀, D) find 5'. 	
(B) Answer the following question.	[02]
1) In usual notation prove that $A(x') = A - A(x)$, Where any $x \in B$.	
(C) Answer the following question. 1) Obtain Cube array representation of Boolean function	[03]
$f(x_1, x_2, x_3, x_4) = x_1(x_2 + x_3x_4').$	
(D) Answer the following question.	[05]
1) State and Prove Unique Representation Theorem of Boolean algebra.	
5.(A) Answer the following questions briefly.	[04]
1) Define: Analytic function. 2) If $c: z = 1$ then $\int_{c} \frac{dz}{z-2} dz$ 3) Define: Harmonic function. 4) Evaluate $\lim_{z\to\infty} \frac{2z+3}{z+i}$.	

(B) Answer the following question.	[02]
1) Show that function $f(z)=z-ar{z}$ is not an analytic function.	
(C) Answer the following question. 1) is Complex function $f(z) = z^2$ entire?. Justify your answer.	[03]
(D) Answer the following question 1) Obtain C-R condition in Cartesian form.	[05]
 6.(A) Answer the following questions briefly. 1) If f(z) = e^{2z} then imaginary part of f(z) is 2) Write Cauchy-Riemann equation in Cartesian form. 3) Define: Laplace Equation. 4) Define: Complex function. 	[04]
(B) Answer the following question.	[02]
1) Prove that $f(z) = (3x + y) + i(3y - x)$ is entire function.	
(C) Answer the following question.	[03]
1) Find an analytic function $f(z) = u + iv$ such that, $Im(f'(z)) = 6x(2y - 1)$ and $f(0) = 3 - 2i$ also find $f(1 + i)$.	
(D) Answer the following question. 1) State and Prove Morera's Theorem.	[05]
7.A) Answer the following questions briefly.	[04]
 Define: Jordan arc. Define: limit of complex variable function. Define: Smooth curve. State Cauchy-Goursat theorem. 	
(B) Answer the following question.	[02]
1) State fundamental theorem of algebra.	
(C) Answer the following question. 1) State and Prove Cauchy's Inequality.	[03]
(D) Answer the following question.	[05]
1) In usual notation prove that $\left \int_{C} f(z) dz \right \leq ML$.	50.43
8.(A) Answer the following questions briefly.	[04]
1) If $C: z-z_0 = r_0 e^{i\theta}$ then $\int_C \frac{dz}{z-z_0} =$ 2) If L is length of Contour C then $L =$ 3) Define: Continuous arc. 4) Define: Closed curve.	

(B) Answer the following question.	[02]
1) Find $\int_0^{2+i} (\bar{z})^2 dz$	
(C) Answer the following question.	[03]
1) In usual notation prove that $\int_C f(z)dz=ir_0\int_0^{2\pi}f(z_0+re^{-i\theta})d\theta$ where $C:z-z_0=r_0e^{i\theta}$.	
(D) Answer the following question. 1) Prove that $u=r^2\sin 2\theta$ is Harmonic function and find it's conjugate.	[05]
9.(A) Answer the following questions briefly.	[04]
 The real part of f(z) = e^z If x + iy = √2 + 3i then x² + y = ? Write the formula to find f'(z₀) for a complex function f(z) = u + iv. Function f(z) = ½ is analytic function. (TRUE / FALSE) 	
(B) Answer the following question.	[02]
1) Prove that $f'(z) = f(z)$ where $f(z) = e^z$.	
(C) Answer the following question.	[03]
1) Evaluate $\int_C \frac{dz}{(z-1)(z-2)}$; $C: z = 3$	
(D) Answer the following question. 1) Obtain C-R condition for an analytic function f(z) in Polar form.	[05]
10.(A) Answer the following questions briefly.	[04]
 If c: z - 2 = 5 then ∫_c dz/(z-3) State Green's theorem. f(z) = z̄ is not an analytic function.(true/false) The real part of (2+3i)/(3-4i) = 	
(B) Answer the following question.	[02]
1) Show that $e^{ar{z}}$ is not analytic.	
(C) Answer the following question.	[03]
1) Evaluate $\int_C \frac{\sin^6 z}{(z-\frac{\pi}{6})^3} dz$ where $c: z = 2$.	
(D) Answer the following question.	[05]

1) Find an analytic function f(z) = u + iv such that u - v = x + y.